CDF Analysis of Particle Magnetophoresis in Multiphase Continuous-Flow Bioseparators
نویسندگان
چکیده
The use of magnetic particles has recently expanded for a process known as detoxification in which different toxins are captured from the bloodstream of septic patients. Due to the laminar flow developed in microfluidic devices, the particle separation after the toxin capture can be carried out in a continuous mode using multiphase microfluidic channels. In this work, the design for a two-phase continuous-flow microseparator and an optimization study for the separation of magnetic beads from blood are presented. The numerical method includes a combination of magnetic and fluidic computational models that were solved using the VOF method with the commercial flow solver FLOW-3D, whereas an external Fortran subroutine was employed for the calculation of the magnetic fields and forces. For optimization purposes, a dimensionless number J is introduced. The results show that complete and safe separation is achieved only for a certain value of J (≈0.3). To the best of our knowledge, this is the first computational study of the interaction between two different fluids flowing simultaneously in the device that takes into account two-way coupled particle-fluid interactions in the flow field and the particle motion effects as they cross the interface between the fluids under various magnetic field intensities.
منابع مشابه
Multiphase flow and tromp curve simulation of dense medium cyclones using Computational Fluid Dynamics
Dense Medium Cyclone is a high capacity device that is widely used in coal preparation. It is simple in design but the swirling turbulent flow, the presence of medium and coal with different density and size fraction and the presence of the air-core make the flow pattern in DMCs complex. In this article the flow pattern simulation of DMC is performed with computational fluid dynamics and Fluent...
متن کاملModeling of cell sorting and rare cell capture with microfabricated biodevices.
In this paper, we review different aspects of computer modeling and simulation of lab-on-a-chip type bioanalytical devices, with special emphasis on cell sorting and rare cell capture, such as circulating tumor cells (CTCs). We critically review important fundamental concepts and innovative applications in addition to detailed analysis by multiphysics approaches. Relevant essentials of hydrodyn...
متن کاملAnalysis of Changes on Mean Particle Size in a Fluidized Bed using Vibration Signature
Vibration signals were measured in a lab-scale fluidized bed to investigate the changes in particle sizes. Experiments were carried out in the bed with a different mass fraction of coarser particles at different superficial gas velocities, and probe heights. The S-statistic test evaluates the dimensionless squared distance between two attractors reconstructed from time series of vibration signa...
متن کاملNegative magnetophoresis in diluted ferrofluid flow.
We report magnetic manipulation of non-magnetic particles suspended in diluted ferrofluid. Diamagnetic particles were introduced into a circular chamber to study the extent of their deflection under the effect of a non-uniform magnetic field of a permanent magnet. Since ferrofluid is a paramagnetic medium, it also experiences a bulk magnetic force that in turn induces a secondary flow opposing ...
متن کاملContinuous microfluidic DNA extraction using phase-transfer magnetophoresis.
This paper reports a novel microfluidic-chip based platform using "phase-transfer magnetophoresis" enabling continuous biomolecule processing. As an example we demonstrate for the first time continuous DNA extraction from cell lysate on a microfluidic chip. After mixing bacterial Escherichia coli culture with superparamagnetic bead suspension, lysis and binding buffers, DNA is released from cel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017